Fonctions

Objectif 1

Déterminer l'expression fonctionnelle d'une fonction affine. Déterminer l'expression fonctionnelle de la droite passant par les points \((-10;-1)\) et \((-3;0)\).

Nouvel exemple

Il s'agit d'une fonction affine dont l'expression fonctionelle est : $$ y = a\cdot x + b $$ Il s'agit dès lors de déterminer la valeur de la pente \(a\) et de l'ordonnée à l'origine \(b\).

On peut calculer la pente : $$ a = \dfrac{\Delta y}{\Delta x} = \dfrac{0-(-1)}{-3-(-10)} = \dfrac{1}{7} = \dfrac{1}{7} $$À ce stade, on a : $$ y = \dfrac{1}{7}x+b $$ Comme on connaît deux points de la fonction, on peut par exemple remplacer le point \((-10, -1)\) dans cette expression et ainsi trouver \(b\) : $$ -1 = \dfrac{1}{7}\cdot (-10)+b $$ En isolant \(b\), on obtient ainsi : $$ b = \dfrac{3}{7} $$

L'expression fonctionnelle cherchée est ainsi : $$ y = \dfrac{1}{7} x +\dfrac{3}{7} $$

Nouvel exemple

Copyright © Olivier Simon 2011-2024