Calcul littéral

Objectif 2

Niveau de difficulté :1 (actuel)234

Factoriser une expression algébrique.$$ -100r^{4}+50r^{3}$$

Nouvel exemple

On commence par regarder s'il existe un facteur (numérique et/ou algébrique) commun à tous les termes. C'est le cas ici. On peut mettre \(50\) en évidence : $$ -100r^{4}+50r^{3} = 50(-2r^{4}+r) $$On peut également mettre \(r^{3}\) en évidence : $$ -100r^{4}+50r^{3} = 10r^{3}(-10r^{}+5) $$

Nouvel exemple

Copyright © Olivier Simon 2011-2025